What are the grades of Invar material?

Author: Ruby

Jun. 17, 2024

Invar

Alloy of nickel and iron with low coefficient of thermal expansion

For more INvar Materialinformation, please contact us. We will provide professional answers.

Samples of Invar The coefficient of thermal expansion of nickel/iron alloys is plotted here against the nickel percentage (on a mass basis) in the alloy. The sharp minimum occurs at the Invar ratio of 36% Ni.

Invar, also known generically as FeNi36 (64FeNi in the US), is a nickel&#;iron alloy notable for its uniquely low coefficient of thermal expansion (CTE or α). The name Invar comes from the word invariable, referring to its relative lack of expansion or contraction with temperature changes,[1] and is a registered trademark of ArcelorMittal.[2]

The discovery of the alloy was made in by Swiss physicist Charles Édouard Guillaume for which he received the Nobel Prize in Physics in . It enabled improvements in scientific instruments.[3]

Properties

[

edit

]

Like other nickel/iron compositions, Invar is a solid solution; that is, it is a single-phase alloy. In one commercial version it consists of approximately 36% nickel and 64% iron.[4] The invar range was described by Westinghouse scientists in as "30&#;45 atom per cent nickel".[5]

Common grades of Invar have a coefficient of thermal expansion (denoted α, and measured between 20 °C and 100 °C) of about 1.2 × 10&#;6 K&#;1 (1.2 ppm/°C), while ordinary steels have values of around 11&#;15 ppm/°C.[citation needed] Extra-pure grades (<0.1% Co) can readily produce values as low as 0.62&#;0.65 ppm/°C.[citation needed] Some formulations display negative thermal expansion (NTE) characteristics.[citation needed] Though it displays high dimensional stability over a range of temperatures, it does have a propensity to creep.[6][7]

Applications

[

edit

]

Invar is used where high dimensional stability is required, such as precision instruments, clocks, seismic creep gauges, color-television tubes' shadow-mask frames,[8] valves in engines and large aerostructure molds.[9]

One of its first applications was in watch balance wheels and pendulum rods for precision regulator clocks. At the time it was invented, the pendulum clock was the world's most precise timekeeper, and the limit to timekeeping accuracy was due to thermal variations in length of clock pendulums. The Riefler regulator clock developed in by Clemens Riefler, the first clock to use an Invar pendulum, had an accuracy of 10 milliseconds per day, and served as the primary time standard in naval observatories and for national time services until the s.

In land surveying, when first-order (high-precision) elevation leveling is to be performed, the level staff (leveling rod) used is made of Invar, instead of wood, fiberglass, or other metals.[10][11] Invar struts were used in some pistons to limit their thermal expansion inside their cylinders.[12] In the manufacture of large composite material structures for aerospace carbon fibre layup molds, Invar is used to facilitate the manufacture of parts to extremely tight tolerances.[13]

In the astronomical field, Invar is used as the structural components that support dimension-sensitive optics of astronomical telescopes.[14] Superior dimensional stability of Invar allows the astronomical telescopes to significantly improve the observation precision and accuracy.

Variations

[

edit

]

There are variations of the original Invar material that have slightly different coefficient of thermal expansion such as:

  • Inovco, which is Fe&#;33Ni&#;4.5Co and has an α of 0.55 ppm/°C (from 20 to 100 °C).[

    citation needed

    ][

    example needed

    ]
  • FeNi42 (for example NILO alloy 42), which has a nickel content of 42% and

    α &#; 5.3 ppm/°C

    , matching that of silicon, is widely used as lead frame material for integrated circuits, etc.[

    citation needed

    ]
  • FeNiCo alloys&#;named Kovar or Dilver P&#;that have the same expansion behaviour (~

    5 ppm/°C

    Want more information on Soft Magnetic Alloy? Feel free to contact us.

    ) and form strong bonds with molten borosilicate glass, and because of that are used for glass-to-metal seals, and to support optical parts in a wide range of temperatures and applications, such as satellites.[

    citation needed

    ]

Explanation of anomalous properties

[

edit

]

A detailed explanation of Invar's anomalously low CTE has proven elusive for physicists.

All the iron-rich face-centered cubic Fe&#;Ni alloys show Invar anomalies in their measured thermal and magnetic properties that evolve continuously in intensity with varying alloy composition. Scientists had once proposed that Invar's behavior was a direct consequence of a high-magnetic-moment to low-magnetic-moment transition occurring in the face centered cubic Fe&#;Ni series (and that gives rise to the mineral antitaenite); however, this theory was proven incorrect.[15] Instead, it appears that the low-moment/high-moment transition is preceded by a high-magnetic-moment frustrated ferromagnetic state in which the Fe&#;Fe magnetic exchange bonds have a large magneto-volume effect of the right sign and magnitude to create the observed thermal expansion anomaly.[16]

Wang et al. considered the statistical mixture between the fully ferromagnetic (FM) configuration and the spin-flipping configurations (SFCs) in Fe
3Pt with the free energies of FM and SFCs predicted from first-principles calculations and were able to predict the temperature ranges of negative thermal expansion under various pressures.[17] It was shown that all individual FM and SFCs have positive thermal expansion, and the negative thermal expansion originates from the increasing populations of SFCs with smaller volumes than that of FM.[18]

See also

[

edit

]

  • Constantan and Manganin, alloys with relatively constant electrical resistivity
  • Elinvar, alloy with relatively constant elasticity over a range of temperatures
  • Sitall and Zerodur, ceramic materials with a relatively low thermal expansion
  • Borosilicate glass and Ultra low expansion glass, low expansion glasses resistant to thermal shock

References

[

edit

]

Invar Properties & Low Coefficient of Thermal Expansion


Invar Properties & Low Coefficient of Thermal Expansion

INVAR

36 ALLOY Invar Properties & Low Coefficient of Thermal Expansion

36 ALLOY

MACHINABILITY DATA

METAL FROM STOCK FLYER


From Wikipedia, the free encyclopedia

Jump to: navigation, search


The coefficient of thermal expansion of nickel/iron alloys is plotted here against the nickel percentage (on a mass basis) in the alloy. The sharp minimum occurs at the Invar ratio of 36% Ni.

Invar, also known generically as FeNi36 (64FeNi in the US), is a nickel steel alloy notable for its uniquely low coefficient of thermal expansion (CTE or α). It was invented in by Swiss scientist Charles Édouard Guillaume. He received the Nobel Prize in Physics in for this discovery, which shows the importance of this alloy in scientific instruments. Invar is a registered trademark of ArcelorMittal - Stainless & Nickel Alloys, formerly known as Imphy Alloys (US Trademark #). Like other nickel iron compositions, Invar is a solid solution; that is, it is a single-phase alloy &#; similar to a dilution of common table salt mixed into water. "Invar" refers to invariable; that is, it will not react to thermal expansion.

Common grades of Invar have an α (20&#;100 °C) of about 1.2 × 10&#;6 K&#;1 (1.2 ppm°C). However, extra-pure grades (<0.1% Co) can readily produce values as low as 0.62&#;0.65 ppm/°C. Some formulations display negative thermal expansion (NTE) characteristics. It is used in precision instruments such as clocks, physics laboratory devices, seismic creep gauges, shadow-mask frames, valves in motors, and antimagnetic watches, etc. However, it has a propensity to creep. In Land Surveying, when first-order (high-precision) elevation leveling is to be performed, the leveling rods used are made of Invar, instead of wood, fiberglass, or other metals.

There are variations of the original Invar material that have slightly different coefficient of thermal expansion such as:

  • Inovco, which Fe-33Ni-4.5Co and has an α (20&#;100 °C) of 0.55 ppm/°C.
  • FeNi42 (for example NILO alloy 42), has a nickel content of 42% and α &#; 5.3 ppm/°C which matches that of silicon and therefore is widely used as lead frame material for electronic components, integrated circuits, etc.
  • FeNiCo alloys &#; named Kovar or Dilver P &#; that have the same expansion behaviour as borosilicate glass, and because of that are used for optical parts in a wide range of temperatures and applications, such as satellites.

Source of Invar&#;s CTE properties

A detailed explanation of Invar's anomalously low CTE has proven elusive for physicists. All the iron-rich face centered cubic Fe-Ni alloys show Invar anomalies in their measured thermal and magnetic properties that evolve continuously in intensity with varying alloy composition. Scientists had once proposed that Invar&#;s behavior was a direct consequence of a high-magnetic-moment to low-magnetic-moment transition occurring in the face centered cubic Fe-Ni series (and that gives rise to the mineral antitaenite), however this has now been shown to be incorrect. Instead, it appears that the low-moment/high-moment transition is preceded by a high-magnetic-moment frustrated ferromagnetic state in which the Fe-Fe magnetic exchange bonds have a large magneto-volume effect of the right sign and magnitude to create the observed thermal expansion anomaly.

Back to Invar Main Page



[TOP]

 

The company is the world’s best Pure Metal supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

44

0

Comments

Please Join Us to post.

0/2000

All Comments ( 0 )

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name: (required)

Your Email: (required)

Subject:

Your Message: (required)